Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.307
Filtrar
1.
Sheng Li Xue Bao ; 76(2): 309-318, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658379

RESUMO

Innate behavior is mainly controlled by genetics, but is also regulated by social experiences such as social isolation. Studies in animal models such as Drosophila and mice have found that social isolation can regulate innate behaviors through the changes at the molecular level, such as hormone, neurotransmitter, neuropeptide level, and at the level of neural circuits. In this review, we summarized the research progress on the regulation of social isolation on various animal innate behaviors, such as sleep, reproduction and aggression by altering the expression of conserved neuropeptides and neurotransmitters, hoping to deepen the understanding of the key and conserved signal pathways that regulate innate behavior by social isolation.


Assuntos
Neuropeptídeos , Isolamento Social , Animais , Neuropeptídeos/fisiologia , Neuropeptídeos/metabolismo , Comportamento Animal/fisiologia , Camundongos , Instinto , Sono/fisiologia , Agressão/fisiologia , Humanos , Reprodução/fisiologia , Neurotransmissores/fisiologia , Neurotransmissores/metabolismo
2.
Behav Processes ; 216: 105013, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460912

RESUMO

Social hierarchy is a crucial element for survival, reproduction, fitness, and the maintenance of a stable social group in social animals. This study aimed to investigate the physiological indicators, nociception, unfamiliar female mice preference, spatial learning memory, and contextual fear memory of male mice with different social status in the same cage. Our findings revealed significant differences in the trunk temperature and contextual fear memory between winner and loser mice. However, there were no major discrepancies in body weight, random and fasting blood glucose levels, whisker number, frontal and perianal temperature, spleen size, mechanical and thermal pain thresholds, preference for unfamiliar female mice, and spatial memory. In conclusion, social status can affect mice in multiple ways, and, therefore, its influence should be considered when conducting studies using these animals.


Assuntos
Agressão , Comportamento Animal , Camundongos , Masculino , Feminino , Animais , Agressão/fisiologia , Comportamento Animal/fisiologia , Aprendizagem , Predomínio Social , Cognição
3.
Nature ; 628(8007): 381-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480888

RESUMO

Our understanding of the neurobiology of primate behaviour largely derives from artificial tasks in highly controlled laboratory settings, overlooking most natural behaviours that primate brains evolved to produce1-3. How primates navigate the multidimensional social relationships that structure daily life4 and shape survival and reproductive success5 remains largely unclear at the single-neuron level. Here we combine ethological analysis, computer vision and wireless recording technologies to identify neural signatures of natural behaviour in unrestrained, socially interacting pairs of rhesus macaques. Single-neuron and population activity in the prefrontal and temporal cortex robustly encoded 24 species-typical behaviours, as well as social context. Male-female partners demonstrated near-perfect reciprocity in grooming, a key behavioural mechanism supporting friendships and alliances6, and neural activity maintained a running account of these social investments. Confronted with an aggressive intruder, behavioural and neural population responses reflected empathy and were buffered by the presence of a partner. Our findings reveal a highly distributed neurophysiological ledger of social dynamics, a potential computational foundation supporting communal life in primate societies, including our own.


Assuntos
Encéfalo , Macaca mulatta , Neurônios , Comportamento Social , Animais , Feminino , Masculino , Agressão/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Empatia , Asseio Animal , Processos Grupais , Macaca mulatta/classificação , Macaca mulatta/fisiologia , Macaca mulatta/psicologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Lobo Temporal/citologia , Lobo Temporal/fisiologia , Neurônios/fisiologia
4.
Bioessays ; 46(4): e2300213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38314963

RESUMO

Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.


Assuntos
Agressão , Núcleo Dorsal da Rafe , Animais , Núcleo Dorsal da Rafe/metabolismo , Agressão/fisiologia , Serotonina/metabolismo , Neurônios/metabolismo
5.
Nat Neurosci ; 27(4): 702-715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347201

RESUMO

Social behaviors often consist of a motivational phase followed by action. Here we show that neurons in the ventromedial hypothalamus ventrolateral area (VMHvl) of mice encode the temporal sequence of aggressive motivation to action. The VMHvl receives local inhibitory input (VMHvl shell) and long-range input from the medial preoptic area (MPO) with functional coupling to neurons with specific temporal profiles. Encoding models reveal that during aggression, VMHvl shellvgat+ activity peaks at the start of an attack, whereas activity from the MPO-VMHvlvgat+ input peaks at specific interaction endpoints. Activation of the MPO-VMHvlvgat+ input promotes and prolongs a low motivation state, whereas activation of VMHvl shellvgat+ results in action-related deficits, acutely terminating attack. Moreover, stimulation of MPO-VMHvlvgat+ input is positively valenced and anxiolytic. Together, these data demonstrate how distinct inhibitory inputs to the hypothalamus can independently gate the motivational and action phases of aggression through a single locus of control.


Assuntos
Agressão , Motivação , Camundongos , Animais , Agressão/fisiologia , Comportamento Social , Hipotálamo/fisiologia , Neurônios/fisiologia
6.
PLoS One ; 19(2): e0297358, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38324564

RESUMO

Home cage aggression in group-housed male mice is a major welfare concern and may compromise animal research. Conventional cages prevent flight or retreat from sight, increasing the risk that agonistic encounters will result in injury. Moreover, depending on social rank, mice vary in their phenotype, and these effects seem highly variable and dependent on the social context. Interventions that reduce aggression, therefore, may reduce not only injuries and stress, but also variability between cage mates. Here we housed male mice (Balb/c and SWISS, group sizes of three and five) with or without partial cage dividers for two months. Mice were inspected for wounding weekly and home cages were recorded during housing and after 6h isolation housing, to assess aggression and assign individual social ranks. Fecal boli and fur were collected to quantify steroid levels. We found no evidence that the provision of cage dividers improves the welfare of group housed male mice; The prevalence of injuries and steroid levels was similar between the two housing conditions and aggression was reduced only in Balb/c strain. However, mice housed with cage dividers developed less despotic hierarchies and had more stable social ranks. We also found a relationship between hormone levels and social rank depending on housing type. Therefore, addition of cage dividers may play a role in stabilizing social ranks and modulating the activation of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes, thus reducing phenotypic variability between mice of different ranks.


Assuntos
Agressão , Comportamento Animal , Animais , Masculino , Camundongos , Agressão/fisiologia , Comportamento Animal/fisiologia , Abrigo para Animais , Esteroides , Hormônios
7.
Sci Rep ; 14(1): 2957, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316883

RESUMO

Emotional outbursts are displays of intense, challenging behaviour and are prevalent in individuals with neurodevelopmental disorders. Outbursts present a danger to individuals and their carers and are cited as reasons for referral to mental health services. However, it is currently unclear how the characteristics of outbursts may determine their severity. Carers (n = 214) of individuals aged between 6 and 25 and experiencing outbursts at least once per month completed the Emotional Outburst Questionnaire. Questionnaire items were used to compare behaviours observed in most severe and least severe outbursts through quantitative and content analyses of open ended data. Signs of physiological arousal and aggression were seen significantly more in most severe outbursts compared to least severe outbursts. Least severe outbursts were seen more frequently, but most severe outbursts were reported to have a longer duration, be at a higher intensity, and have a longer recovery time. Additionally, associations were found between reduced eye contact and most severe outbursts, as well as expression of suicidal ideation and most severe outbursts. Certain behaviours, notably forms of aggression and physiological arousal, are associated with most severe outbursts. Findings of this study may allow future work examining cross-disorder differences in outbursts to inform targeted interventions aiming to reduce outburst severity and impact. Additionally, identification of such outburst characteristics could aid in measurement of outburst severity, which would allow for more reliable and valid studies on outburst interventions.


Assuntos
Agressão , Transtornos do Neurodesenvolvimento , Humanos , Adolescente , Criança , Adulto Jovem , Adulto , Agressão/fisiologia , Transtornos do Humor , Inquéritos e Questionários , Ideação Suicida
8.
Neuroscience ; 541: 118-132, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38301739

RESUMO

Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.


Assuntos
Aves Canoras , Humanos , Animais , Masculino , Aves Canoras/fisiologia , Corticosterona , Progesterona/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Testosterona , Androgênios , Agressão/fisiologia , Estradiol/farmacologia , Pregnenolona/farmacologia
9.
Genes Brain Behav ; 23(1): e12887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373143

RESUMO

Domesticated animals have been developed by selecting desirable traits following the initial unconscious selection stage, and now exhibit phenotypes desired by humans. Tameness is a common behavioural trait found in all domesticated animals. At the same time, these domesticated animals exhibit a variety of morphological, behavioural, and physiological traits that differ from their wild counterparts of their ancestral species. These traits are collectively referred to as domestication syndrome. However, whether this phenomenon exists is debatable. Previously, selective breeding has been used to enhance active tameness, a motivation to interact with humans, in wild heterogeneous stock mice derived from eight wild inbred strains. In the current study, we used tame mice to study how selective breeding for active tameness affects behavioural and morphological traits. A series of behavioural and morphological analyses on mice showed an increased preference for social stimuli and a longer duration of engagement in non-aggressive behaviour. However, no differences were observed in exploratory or anxiety-related behaviours. Similarly, selection for tameness did not affect ultrasonic vocalisations in mice, and no changes were observed in known morphological traits associated with domestication syndrome. These results suggest that there may be a link between active tameness and sociability and provide insights into the relationship between tameness and other behaviours in the context of domestication.


Assuntos
Comportamento Animal , Domesticação , Humanos , Animais , Camundongos , Comportamento Animal/fisiologia , Animais Domésticos/genética , Seleção Artificial , Agressão/fisiologia
10.
Sci Rep ; 14(1): 4087, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374428

RESUMO

Youths with high levels of callous-unemotional (CU) traits and aggression are at an increased risk for developing antisocial behaviours into adulthood. In this population, neurostructural grey matter abnormalities have been observed in the prefrontal cortex. However, the directionality of these associations is inconsistent, prompting some to suggest they may vary across development. Although similar neurodevelopmental patterns have been observed for other disorders featuring emotional and behavioural dysregulation, few studies have tested this hypothesis for CU traits, and particularly not for aggression subtypes. The current study sought to examine grey matter correlates of CU traits and aggression (including its subtypes), and then determine whether these associations varied by age. Fifty-four youths (10-19 years old) who were characterized for CU traits and aggression underwent MRI. Grey matter volume and surface area within the anterior cingulate cortex was positively associated with CU traits. The correlation between CU traits and medial orbitofrontal cortex (mOFC) volume varied significantly as a function of age, as did the correlation between reactive aggression and mOFC surface area. These associations became more positive with age. There were no significant findings for proactive/total aggression. Results are interpreted considering the potential for delayed cortical maturation in youths with high CU traits/aggression.


Assuntos
Transtorno da Conduta , Adolescente , Humanos , Criança , Adulto Jovem , Adulto , Agressão/fisiologia , Emoções/fisiologia , Transtorno da Personalidade Antissocial/diagnóstico por imagem , Transtorno da Personalidade Antissocial/psicologia , Córtex Pré-Frontal/diagnóstico por imagem
11.
Horm Behav ; 160: 105487, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281444

RESUMO

Oxytocin is a versatile neuropeptide that modulates many different forms of social behavior. Recent hypotheses pose that oxytocin enhances the salience of rewarding and aversive social experiences, and the field has been working to identify mechanisms that allow oxytocin to have diverse effects on behavior. Here we review studies conducted on the California mouse (Peromyscus californicus) that shed light on how oxytocin modulates social behavior following stressful experiences. In this species, both males and females exhibit high levels of aggression, which has facilitated the study of how social stress impacts both sexes. We review findings of short- and long-term effects of social stress on the reactivity of oxytocin neurons. We also consider the results of pharmacological studies which show that oxytocin receptors in the bed nucleus of the stria terminalis and nucleus accumbens have distinct but overlapping effects on social approach behaviors. These findings help explain how social stress can have different behavioral effects in males and females, and how oxytocin can have such divergent effects on behavior. Finally, we consider how new technological developments and innovative research programs take advantage of the unique social organization of California mice to address questions that can be difficult to study in conventional rodent model species. These new methods and questions have opened new avenues for studying the neurobiology of social behavior.


Assuntos
Ocitocina , Peromyscus , Masculino , Feminino , Animais , Ocitocina/farmacologia , Ocitocina/fisiologia , Peromyscus/fisiologia , Comportamento Social , Agressão/fisiologia , Receptores de Ocitocina , Roedores
12.
Nature ; 626(7998): 347-356, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267576

RESUMO

To survive in a complex social group, one needs to know who to approach and, more importantly, who to avoid. In mice, a single defeat causes the losing mouse to stay away from the winner for weeks1. Here through a series of functional manipulation and recording experiments, we identify oxytocin neurons in the retrochiasmatic supraoptic nucleus (SOROXT) and oxytocin-receptor-expressing cells in the anterior subdivision of the ventromedial hypothalamus, ventrolateral part (aVMHvlOXTR) as a key circuit motif for defeat-induced social avoidance. Before defeat, aVMHvlOXTR cells minimally respond to aggressor cues. During defeat, aVMHvlOXTR cells are highly activated and, with the help of an exclusive oxytocin supply from the SOR, potentiate their responses to aggressor cues. After defeat, strong aggressor-induced aVMHvlOXTR cell activation drives the animal to avoid the aggressor and minimizes future defeat. Our study uncovers a neural process that supports rapid social learning caused by defeat and highlights the importance of the brain oxytocin system in social plasticity.


Assuntos
Agressão , Aprendizagem da Esquiva , Hipotálamo , Vias Neurais , Neurônios , Ocitocina , Aprendizado Social , Animais , Camundongos , Agressão/fisiologia , Aprendizagem da Esquiva/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Vias Neurais/fisiologia , Neurônios/metabolismo , Ocitocina/metabolismo , Receptores de Ocitocina/metabolismo , Comportamento Social , Aprendizado Social/fisiologia , Núcleo Supraóptico/citologia , Núcleo Supraóptico/metabolismo , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo , Plasticidade Neuronal
13.
Free Radic Biol Med ; 210: 54-64, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979890

RESUMO

Social isolation has emerged as a significant issue during the COVID-19 pandemic that can adversely impact human mental health and potentially lead to pathological aggression. Given the lack of effective therapeutic interventions for aggressive behavior, alternative approaches are necessary. In this study, we utilized a genetic method combined with a pharmacological approach to identify and demonstrate the crucial role of Cdk5 in escalated intermale attack behavior induced by 2-week social isolation. Moreover, we developed a small peptide that effectively disrupts the interaction between Cdk5 and GluN2B, given the known involvement of this complex in various neuropsychiatric disorders. Administration of the peptide, either systemically or via intrahippocampal injection, significantly reduced oxidative stress in the hippocampus and attenuated intermale attack behavior induced by 2-week social isolation. These findings highlight the previously unknown role of the hippocampal Cdk5-GluN2B complex in social isolation-induced aggressive behavior in mice and propose the peptide as a promising therapeutic strategy for regulating attack behavior and oxidative stress.


Assuntos
Hipocampo , Pandemias , Camundongos , Animais , Humanos , Isolamento Social , Agressão/fisiologia , Peptídeos/farmacologia
14.
Mol Cell Endocrinol ; 580: 112101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923055

RESUMO

Terrestrial vertebrates have a population of androgen-dependent vasotocin (VT)-expressing neurons in the extended amygdala that are more abundant in males and mediate male-typical social behaviors, including aggression. Teleosts lack these neurons but instead have novel male-specific VT-expressing neurons in the tuberal hypothalamus. Here we found in medaka that vt expression in these neurons is dependent on post-pubertal gonadal androgens and that androgens can act on these neurons to directly stimulate vt transcription via the androgen receptor subtype Ara. Furthermore, administration of exogenous VT induced aggression in females and alterations in the androgen milieu led to correlated changes in the levels of tuberal hypothalamic vt expression and aggression in both sexes. However, genetic ablation of vt failed to prevent androgen-induced aggression in females. Collectively, our results demonstrate a marked androgen dependence of male-specific vt expression in the teleost tuberal hypothalamus, although its relevance to male-typical aggression needs to be further validated.


Assuntos
Agressão , Oryzias , Animais , Feminino , Masculino , Agressão/fisiologia , Androgênios/farmacologia , Androgênios/metabolismo , Comportamento Sexual Animal/fisiologia , Vasotocina/metabolismo , Oryzias/metabolismo , Hipotálamo/metabolismo
15.
Horm Behav ; 157: 105452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977023

RESUMO

Social hierarchies are a prevalent feature of all animal groups, and an individual's rank within the group can significantly affect their overall health, typically at the greatest expense of the lowest-ranked individuals, or omegas. These subjects have been shown to exhibit various stress-related phenotypes, such as increased hypothalamic-pituitary axis activity and increased amygdalar corticotropin-releasing factor levels compared to higher-ranked subjects. However, these findings have been primarily characterized in males and in models requiring exhibition of severe aggression. The goals of the current study, therefore, were to characterize the formation and maintenance of social hierarchies using the tube test and palatable liquid competition in same-sex groups of male and female C57BL/6 J mice. We also aimed to examine the effects of tube test-determined social rank on plasma and hypothalamic oxytocin and vasopressin levels, peptides with established roles in social behaviors and the stress response. Lastly, we assessed the effects of environmental enrichment and length of testing on the measures outlined above. Overall, we demonstrated that males and females develop social hierarchies and that these hierarchies can be determined using the tube test. While we were unable to establish a consistent connection between peptide levels and social rank, we observed transient changes in these peptides reflecting complex interactions between social rank, sex, environment, and length of testing. We also found that many male and female omegas began to exhibit passive coping behavior after repeated tube test losses, demonstrating the potential of this assay to serve as a model of chronic, mild psychosocial stress.


Assuntos
Hierarquia Social , Comportamento Social , Humanos , Animais , Camundongos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Agressão/fisiologia , Hipotálamo
16.
J Psychiatr Res ; 170: 200-206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157667

RESUMO

INTRODUCTION: This study aims to enhance the understanding of the association between the phenotypic and endophenotypic characteristics of impulsive-aggressive disorders, through the study of plasma oxytocin (OXT) and oxytocin receptor (OXTR) levels in patients with borderline personality disorder (BPD) and patients with eating disorders (ED), as well as to examine the relationship of OXT system with aggressive behavior in these disorders. METHODS: 68 patients with BPD, 67 patients with ED and 57 healthy control subjects were examined for plasma oxytocin levels and protein expression of OXTR in blood mononuclear cells. Aggressive behavior was assessed using the State-Trait Anger Expression Inventory (STAXI-2). Other self and hetero-aggressive behaviors were also evaluated through interviews. RESULTS: BPD and ED patients exhibited significantly lower plasma oxytocin levels than control subjects. Furthermore, BPD patients demonstrated significantly reduced expression of OXTR compared to controls. Plasma oxytocin levels negatively correlated with verbal aggression, while OXTR expression was inversely associated with the STAXI trait subscale. CONCLUSIONS: The findings validate the existence of oxytocin system dysfunction in impulsive-aggressive disorders. They also support the link between low OXT levels in plasma and OXTR expression and the impulsive-aggressive behavior that characterizes these patients in both state and trait situations.


Assuntos
Ocitocina , Receptores de Ocitocina , Humanos , Agressão/fisiologia , Expressão Gênica , Fenótipo , Receptores de Ocitocina/genética
17.
Sci Rep ; 13(1): 21252, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040814

RESUMO

Behavioral traits in dogs are assessed for a wide range of purposes such as determining selection for breeding, chance of being adopted or prediction of working aptitude. Most methods for assessing behavioral traits are questionnaire or observation-based, requiring significant amounts of time, effort and expertise. In addition, these methods might be also susceptible to subjectivity and bias, negatively impacting their reliability. In this study, we proposed an automated computational approach that may provide a more objective, robust and resource-efficient alternative to current solutions. Using part of a 'Stranger Test' protocol, we tested n = 53 dogs for their response to the presence and neutral actions of a stranger. Dog coping styles were scored by three dog behavior experts. Moreover, data were collected from their owners/trainers using the Canine Behavioral Assessment and Research Questionnaire (C-BARQ). An unsupervised clustering of the dogs' trajectories revealed two main clusters showing a significant difference in the stranger-directed fear C-BARQ category, as well as a good separation between (sufficiently) relaxed dogs and dogs with excessive behaviors towards strangers based on expert scoring. Based on the clustering, we obtained a machine learning classifier for expert scoring of coping styles towards strangers, which reached an accuracy of 78%. We also obtained a regression model predicting C-BARQ scores with varying performance, the best being Owner-Directed Aggression (with a mean average error of 0.108) and Excitability (with a mean square error of 0.032). This case study demonstrates a novel paradigm of 'machine-based' dog behavioral assessment, highlighting the value and great promise of AI in this context.


Assuntos
Comportamento Animal , Medo , Cães , Animais , Comportamento Animal/fisiologia , Reprodutibilidade dos Testes , Agressão/fisiologia , Inquéritos e Questionários
18.
J Neurochem ; 167(6): 778-794, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38037675

RESUMO

Epidemiological studies have indicated that child maltreatment, such as neglect, is a risk factor of escalated aggression, potentially leading to delinquency and violent crime in the future. However, little is known about the mechanisms by which an early adverse environment may later cause violent behavior. In this study, we aimed to thoroughly examine the association between aggression against conspecific animals and the activity of amygdala subnuclei using the maternal separation (MS) model, which is a common model of early life stress. In the MS group, pups of Sprague-Dawley rats were separated from their dam during postnatal days 2-20 (twice a day, 3 h each). We only included 9-week-old male offspring for each analysis and compared the MS group with the mother-reared control group; both groups were raised by the same dam during postnatal days 2-20. The results revealed that the MS group exhibited higher aggression and excessive activity of only the central amygdala (CeA) among the amygdala subnuclei during the aggressive behavior test. Moreover, a significant positive correlation was observed between higher aggression and CeA activation. While CeA activity is known to be involved in hunting behavior for prey, some previous studies have also indicated a relationship between CeA and intraspecific aggression. It remains unclear, however, whether excessive CeA activity directly induces intraspecific aggression. Therefore, we stimulated the CeA using optogenetics with 8-week-old rats to clarify the relationship between intraspecific aggression and CeA activity. Notably, CeA activation resulted in higher aggression, even when the opponent was a conspecific animal. In particular, bilateral CeA activation resulted in more severe displays of aggressive behavior than necessary, such as biting a surrendered opponent. These findings suggest that an adverse environment during early development intensifies aggression through excessive CeA activation, which can increase the risk of escalating to violent behavior in the future.


Assuntos
Agressão , Núcleo Central da Amígdala , Animais , Humanos , Masculino , Ratos , Agressão/fisiologia , Privação Materna , Ratos Sprague-Dawley
19.
PLoS Biol ; 21(12): e3002442, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127837

RESUMO

Rodent tears contain social chemosignals with diverse effects, including blocking male aggression. Human tears also contain a chemosignal that lowers male testosterone, but its behavioral significance was unclear. Because reduced testosterone is associated with reduced aggression, we tested the hypothesis that human tears act like rodent tears to block male aggression. Using a standard behavioral paradigm, we found that sniffing emotional tears with no odor percept reduced human male aggression by 43.7%. To probe the peripheral brain substrates of this effect, we applied tears to 62 human olfactory receptors in vitro. We identified 4 receptors that responded in a dose-dependent manner to this stimulus. Finally, to probe the central brain substrates of this effect, we repeated the experiment concurrent with functional brain imaging. We found that sniffing tears increased functional connectivity between the neural substrates of olfaction and aggression, reducing overall levels of neural activity in the latter. Taken together, our results imply that like in rodents, a human tear-bound chemosignal lowers male aggression, a mechanism that likely relies on the structural and functional overlap in the brain substrates of olfaction and aggression. We suggest that tears are a mammalian-wide mechanism that provides a chemical blanket protecting against aggression.


Assuntos
Agressão , Olfato , Lágrimas , Feminino , Humanos , Masculino , Agressão/fisiologia , Encéfalo/fisiologia , Odorantes , Olfato/fisiologia , Testosterona/farmacologia , Lágrimas/química
20.
Int J Psychophysiol ; 194: 112260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37939902

RESUMO

Psychologically aggressive parenting (PAP) exposure negatively affects children's development of aggression. Nevertheless, not all children exposed to PAP display aggressive behaviors. Sympathetic nervous system (SNS) activity may influence the impact of early adversity on aggression. This study examines whether SNS reactivity and sex moderate the link between psychologically aggressive parenting (PAP) during childhood and later aggression. Emerging adults (N = 182, mean age = 19.03 years, 53 % female) retrospectively reported on their childhood PAP and current aggression. Salivary alpha-amylase (sAA) collected from a social stress task indexed SNS reactivity to stress. Childhood PAP was associated with emerging adulthood anger, hostility, physical, and verbal aggression. Moreover, males were more likely to exhibit anger, verbal, and physical aggression and had higher levels of sAA reactivity than females. A significant three-way interaction between childhood PAP, sAA reactivity, and sex accounted for participants' current verbal aggression. The link between childhood PAP and later verbal aggression was stronger for males at higher levels of sAA reactivity. Females with higher levels of sAA reactivity displayed lower levels of verbal aggression regardless of PAP exposure. Males and females with lower levels of sAA reactivity were at elevated risk for verbal aggression regardless of PAP exposure. Moreover, we found a significant two-way interaction between PAP and sex on anger, such that higher levels of PAP exposure were associated with more anger among males, but not females. These findings highlight the importance of examining interactions between biological and environmental factors and sex in accounting for later aggression.


Assuntos
alfa-Amilases Salivares , Masculino , Criança , Adulto , Humanos , Feminino , Adulto Jovem , Poder Familiar , Estudos Retrospectivos , Agressão/fisiologia , Ira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...